Cycloaddition of t-Butylcyanoketen to Racemic and Optically Active 1,3-Diphenylallene

By Howard A. Bampfield, Peter R. Brook*, and Walter S. McDonald \dagger^{*}
(Department of Organic Chemistry and \dagger Inorganic and Structural Chemistry, The University, Leeds LS2 9JT)

Summary X-Ray studies show the major adduct from t-butylcyanoketen and racemic 1,3-diphenylallene to be (1), and the only other adduct is shown to have structure (2); use of optically active allene shows that both are formed to some extent via a chiral transition state.

The cycloaddition of ketens to acyclic 1,3 -disubstituted allenes yields mainly 2 - Z-alkylidenecyclobutanones with lesser amounts of the $2-E$-alkylidene isomers. ${ }^{1,2}$ Optically enriched allenes give Z-isomers, which, in contrast to E-isomers, have little or no optical activity and this led to the proposal that the Z-isomers arise by a two-step mechanism involving achiral zwitterionic species. ${ }^{2,3}$ We now report that 1,3 -diphenylallene behaves differently with t-butylcyanoketen ${ }^{4}$ (TBCK) giving exclusively $2-E$-benzylidenecyclobutanones.

(1)

(2)

(3)

(4)

In benzene at 20°, TBCK and the racemic allene ($1 \cdot 1$ mole) gave only two adducts in a ratio of $77: 23$, separable by chromatography (49%).

Crystals of the major isomer, m.p. 145°, are triclinic, space group $P \overline{1}$, with $a=9.824(6), \quad b=10 \cdot 799(1), \quad c=$ $9 \cdot 622(6) \AA, \alpha=105 \cdot 74(2)^{\circ}, \beta=114.60(8)^{\circ}, \gamma=83 \cdot 43(2)^{\circ}$, $Z=2$. The structure (1) was determined by direct methods, using the MULTAN programs, ${ }^{5}$ and refined by least-squares to a current R of $6 \cdot 12 \%$ based on 3031 nonzero diffractometer data. The molecular structure is shown in the Figure. The cyclobutane ring is non-planar, with a dihedral angle about the $C(1)-C(3)$ line of 12°, resulting in a pseudo-axial orientation of the t-butyl group. The phenyl ring $C(7)$ to $C(12)$ is 14° from coplanarity with the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)=\mathrm{C}(6)-\mathrm{H}(6)-\mathrm{C}(7)$ olefinic system.

Figure
Steric interaction of the t-butyl and phenyl substituents (mutually cis) is shown by the $\mathrm{C}(3)-\mathrm{C}(4)$ bond length of $1 \cdot 613(3) \AA$ and by the $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(13)$ and $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(21)$ angles of $120.9(1)^{\circ}$ and $122 \cdot 7(1)^{\circ}$, whilst repulsion between the phenyl- and benzylidene-substituents leads to angles $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(13), \quad \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$, and $\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ of $122 \cdot 7(1)^{\circ}, 140 \cdot 7(2)^{\circ}$, and $131 \cdot 0(2)^{\circ}$ respectively.

The minor adduct, m.p. 188°, was assigned structure (2) by comparison of its i.r. and n.m.r. spectra with those of (1). N.m.r. showed the olefinic protons of (1) and (2) at $\delta 7.56$ and 7.50 p.p.m. respectively indicating that both are of the same E-olefinic geometry. \ddagger Adduct (2), but not (1), on irradiation of the t-butyl group, gave an N.O.E. ${ }^{6}$ of 20% for the ring proton signal, showing these groups are cis in (2).

Partially resolved 1,3 -diphenylallene, $[\alpha]_{\mathrm{D}}-365^{\circ}$ (hexane, $c 0.32$) gave adduct (1), $[\alpha]_{\mathrm{D}}-21.4^{\circ}\left(\mathrm{CHCl}_{3}, c 0.32\right)$ and (2), $[\alpha]_{\mathbf{D}}-213^{\circ}\left(\mathrm{CHCl}_{8}, c 0 \cdot 206\right)$, demonstrating that (1) and (2) are to some extent § formed via a chiral transition state.
Any detailed mechanism has to account both for the major product being the torsionally strained adduct (1),
\ddagger Protons in the E - and Z-series show chemical shift differences of about 0.7 p.p.m. with the latter at higher field. ${ }^{1}$
§ The $[\alpha]_{\mathrm{D}}$ of the allene is $\mathbf{3 6 \%}$ of the highest reported. ${ }^{7}$ Adducts (1) and (particularly) (2) tend to crystallise as racemates and $[\alpha]_{D}$ was measured on chromatographically pure compounds once crystallised. In one experiment using $S(+)$-allene, $4 \cdot 5 \%$ of amorphous (2) was recovered from mother liquors with $[\alpha]_{\mathrm{D}}+554^{\circ}$ (purity $>90 \%$ by n.m.r.). Crystalline (2), above, is therefore less than 38% optically pure.
and also for the absence of Z-isomers. Both requirements are satisfied by the usual $\left[\pi^{2}{ }_{a}+\pi_{2}{ }^{2}\right]$ concerted addition (with some charge separation in the transition state). Equations (i) and (ii) show the sterically favoured approaches [(i), preferred] with the keten adding antarafacially [rotations $(\mathrm{A}+\mathrm{B})$], which lead from the $\mathrm{R}(-)$ allene ${ }^{8}$ to adducts with the 3 (S) configuration.

It is suggested that the 1,3 -diphenylallene behaves differently from the 1,3 -dialkyl-derivatives because in the phenyl series positive charge developing in the transition state is stabilised by benzylic resonance, so that the allylic stabilisation of this charge obtained by rotation A in (i) and (ii) which leads to large steric interactions need not arise until far along the reaction path. For l,3-dialkylallenes it has been proposed that the early development of this
allylic resonance by rotation A without B produces positive charge at both ends of the allenic system, so diverting the concerted reaction to zwitterion (3) and thence to Z adducts. ${ }^{3}$

One alternative route to the observed E-benzylidene adducts must be mentioned. If because of the phenyl groups the allylic resonance above is not important, the rotation C as an alternative to A in (i) and (ii) leads to zwitterion (4) which lacks chirality in both orthogonal and planar conformations and can only give racemic E-adducts. Further work to determine optical yields § and configurations \mathbb{T} in the adducts is continuing.

We thank the S.R.C. for financial support (H.A.B.).
(Received, 6th December 1974; Com. 1479.)
\mathbb{T} We thank Prof. W. Klyne and Dr. P. M. Scopes for c.d. measurements on (1) and (2) and advice. These curves were too complex to give firm assignments of configuration.
${ }^{1}$ M. Bertrand, J-L. Gras, and J. Gore, Tetrahedron Letters, 1972, 2499.
${ }^{2}$ W. G. Duncan, W. Weyler, and H. W. Moore, Tetrahedron Letters, 1973, 4391.
${ }^{3}$ H. A. Bampfield and P. R. Brook, J.C.S. Chem. Comm., 1974, 171.
${ }^{4}$ H. W. Moore and W. Weyler, J. Amer. Chem. Soc., 1970, 92, 4132; 1971, 93, 2812.
${ }^{5}$ P. Main, M. M. Woolfson, and G. Germain, 'MULTAN. A Computer Program for the Automatic Solution of Crystal Structures,' University of York, 1971.
${ }^{6}$ J. H. Noggle and R. E. Schirmer, 'The nuclear Overhauser effect; chemical applications,' Academic Press, New York, 1971.
${ }^{7}$ J. M. Walbrick, J. W. Wilson, and W. M. Jones, J. Amer. Chem. Soc., 1968, 90, 2895.
${ }^{8}$ S. F. Mason and G. W. Vane, Tetrahedron Letters, 1965, 1593; W. M. Jones and J. W. Wilson, ibid., 1965, 1587; S. F. Mason, 'O.R.D. and C.D. in Organic Chemistry,' Ed. G. Snatzke, Heyden, London, 1967, p. 81.

